The pathogenic U3271C human mitochondrial tRNA(Leu(UUR)) mutation disrupts a fragile anticodon stem.
نویسندگان
چکیده
The U3271C mutation affecting the human mitochondrial transfer RNA(Leu(UUR)) (hs mt tRNA) is correlated with diabetes and mitochondrial encephalopathies. We have explored the relationship between the structural effects of this mutation and its impact on function using chemical probing experiments and in vitro aminoacylation assays to investigate a series of tRNA constructs. Chemical probing experiments indicate that the U3271C substitution, which replaces an AU pair with a CA mispair, significantly destabilizes the anticodon stem. The introduction of a compensatory A3261G mutation reintroduces base pairing at this site and restores the structure of this domain. In fact, the anticodon stem of the A3261G/U3271C mutant appears more structured than wild-type (WT) hs mt tRNA(Leu(UUR)), indicating that the entirely AU stem of the native tRNA is intrinsically weak. The results of the chemical probing experiments are mirrored in the aminoacylation activities of the mutants. The U3271C substitution decreases aminoacylation reactivity relative to the WT tRNA due to an increase in K(m) for the pathogenic mutant. The binding defect is a direct result of the structural disruption caused by the pathogenic mutation, as the introduction of the stabilizing compensatory mutation restores aminoacylation activity. Other examples of functional defects associated with the disruption of weak domains in hs mt tRNAs have been reported, indicating that the effects of pathogenic mutations may be amplified by the fragile structures that are characteristic of this class of tRNAs.
منابع مشابه
Codon-specific translational defect caused by a wobble modification deficiency in mutant tRNA from a human mitochondrial disease.
Point mutations in the mitochondrial (mt) tRNA(Leu(UUR)) gene are responsible for mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), a subgroup of mitochondrial encephalomyopathic diseases. We previously showed that mt tRNA(Leu(UUR)) with an A3243G or T3271C mutation derived from patients with MELAS are deficient in a normal taurine-containing modificatio...
متن کاملAcquisition of the wobble modification in mitochondrial tRNALeu(CUN) bearing the G12300A mutation suppresses the MELAS molecular defect.
The A3243G mutation in the mitochondrial gene for human mitochondrial (mt) tRNA(Leu(UUR)), responsible for decoding of UUR codons, is associated with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS). We previously demonstrated that this mutation causes defects in 5-taurinomethyluridine (taum(5)U) modification at the anticodon first (wobble) position of th...
متن کاملA pathogenic point mutation reduces stability of mitochondrial mutant tRNA(Ile).
Point mutations in mitochondrial tRNA genes are responsible for individual subgroups of mitochondrial encephalomyopathies. We have recently reported that point mutations in the tRNA(Leu)(UUR) and tRNA(Lys) genes cause a defect in the normal modification at the first nucleotide of the anticodon. As part of a systematic analysis of pathogenic mutant mitochondrial tRNAs, we purified tRNA(Ile) with...
متن کاملSpecific correlation between the wobble modification deficiency in mutant tRNAs and the clinical features of a human mitochondrial disease.
Mutations in mtDNA are responsible for a variety of mitochondrial diseases, where the mitochondrial tRNA(Leu(UUR)) gene has especially hot spots for pathogenic mutations. Clinical features often depend on the tRNA species and/or positions of the mutations; however, molecular pathogenesis elucidating the relation between the location of the mutations and their leading phenotype are not fully und...
متن کاملMolecular dysfunction associated with the human mitochondrial 3302A>G mutation in the MTTL1 (mt-tRNALeu(UUR)) gene
The gene encoding mt-tRNA(Leu(UUR)), MT-TL1, is a hotspot for pathogenic mtDNA mutations. Amongst the first to be described was the 3302A>G transition which resulted in a substantial accumulation in patient muscle of RNA19, an unprocessed RNA intermediate including mt-16S rRNA, mt-tRNA(Leu(UUR)) and MTND1. We have now been able to further assess the molecular aetiology associated with 3302A>G i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 31 2 شماره
صفحات -
تاریخ انتشار 2003